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Abstract: Accuracy evaluation of a 3D pointcloud map is crucial for the development of autonomous driving systems.
In this work, we propose a user-independent software/hardware system that can quantitatively evaluate the accuracy of a
3D pointcloud map acquired from LiDAR(-Inertial) SLAM. We introduce a LiDAR target that functions robustly in the
outdoor environment, while remaining observable by LiDAR. We also propose a software algorithm that automatically
extracts representative points and calculates the accuracy of the 3D pointcloud map by leveraging GPS position data. This
methodology overcomes the limitations of the manual selection method, that its result varies between users. Furthermore,
two different error metrics, relative and absolute errors, are introduced to analyze the accuracy from different perspectives.
Our implementations are available at: https://github.com/SangwooJung98/3D Map Evaluation
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1. INTRODUCTION AND RELATED WORKS

Light Detection and Ranging (LiDAR) is one of the
representative sensors that provide 3D points containing
accurate information around it. Due to its robustness of
light conditions and convenient pointcloud data genera-
tion, LiDAR is widely exploited in simultaneous local-
ization and mapping (SLAM) research [1–5]. With the
development of LiDAR SLAM, the importance of an ac-
curate 3D pointcloud map is rising as it can be exploited
in various fields such as autonomous car driving [6, 7],
high-resolution map [8], and long-term map management
[9].

Following the increase of 3D pointcloud map utiliza-
tion, evaluating the accuracy of each map has also be-
come important. The accuracy of a 3D pointcloud map
generated by LiDAR SLAM is generally approached in-
directly by the accuracy of odometry, which is another
output of LiDAR SLAM. [10] Traditionally, the direct
calculation of the accuracy of a 3D pointcloud map is per-
formed by placing a small object at a specific location and
selecting a single point that represents the object from the
3D map by human hand. However, due to the character-
istic of LiDAR that the pointcloud density decreases pro-
portional to the distance from the sensor, selection of the
representative point may vary depending on the user.

To overcome the problems mentioned above, we pro-
pose a target base 3D pointcloud map accuracy measure-
ment algorithm. Research on targets for LiDAR [11–13]
has been done while their design purpose was mostly the
extrinsic calibration between LiDAR and cameras. Un-
like existing LiDAR targets, the proposed target is robust
in outdoor environments while remaining detectable by
LiDAR. Furthermore, by exploiting K-means clustering
[14], random sample consensus (RANSAC) [15], and sin-

†The authors contributed equally to this paper.

Target 1 (Real)

Target 2 (Real)

Target N (Real)

Target 1 (Map)

Target 2 (Map)

Target N (Map)
Distance 1-1

Distance 2-2

Distance N-N

Global Frame (UTM) Error Calculation

Absolute Error

Relative Error

⋮

Average of N segments

⋮

Average of difference 

between 𝑵𝑪𝟐 Segment Pairs

Fig. 1. An overview of the absolute and relative error
metrics. Absolute error is derived from the distance be-
tween N pairs of corresponding target pose and ground
truth pose. Relative error is derived from the distance be-
tween every two target poses.

gular value decomposition to the target pointcloud, the
target position can be extracted consistently without de-
pending on the user. With the calculated target pose, we
propose two different error metrics (relative and abso-
lute errors) for measuring the accuracy of 3D pointcloud
maps. An overview of the two error metrics is illustrated
in Fig. 1, while the major contributions of the work are as
follows:

• We introduce the hardware design of the LiDAR tar-
get, which is robust in the outdoor environment, and a
software algorithm that calculates the position of each Li-
DAR target included in the 3D pointcloud map.
• We suggest two different error metrics (relative and ab-
solute error) that can be exploited for analyzing the accu-
racy of the 3D pointcloud map from different perspec-
tives.
• We release our evaluation algorithm and hardware de-
sign to the public.
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https://github.com/SangwooJung98/3D_Map_Evaluation
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Fig. 2. Pipeline of the algorithm. The target genera-
tion(green) process can be performed with any LiDAR
based SLAM algorithms. Using the target pointclouds
and GPS poses, target poses on the map are estimated
(blue). Map accuracy is evaluated using the GPS target
pose and estimated target pose (red).

(a) Target example 1 (b) Target example 2

Fig. 3. (a) and (b) shows the target arrangement exam-
ple. Due to the holes in the target, it is robust to wind in
outdoor environments while remaining detectable by Li-
DAR.

2. HARDWARE DESIGN AND TARGET POSE
ESTIMATION

Due to the random wind, dust, and other unpredictable
factors of the outdoor environment, the target should be
1) robust to wind, 2) GPS attachable, and 3) easy to
build. Using the 30×30 aluminum extrusion and cross-
shaped meat grills, we built an outdoor robust LiDAR tar-
get, as shown in Fig. 3. The length of each edge is 0.6m,
and the ground truth target pose can be acquired using the
GPS sensor (Sokkia GRX3) attached to the top of it.

Fig. 2 illustrates the overall pipeline of the full al-
gorithm. As an output of LiDAR SLAM framework, a
global 3D pointcloud map is acquired. By cropping a
sphere with a 5m radius, centered on the GPS target pose
obtained from the GPS sensor attached to the target, a
pointcloud that includes the target can be cropped from
the full 3D map. This process is defined as loose crop-
ping, as the resulting pointcloud includes both the target
and surrounding ground points. Alternatively, the loose

(a) Full Pointcloud

(b) Loosely Cropped (c) Tightly Cropped

Fig. 4. Visualization of the cropping process. (b) is
cropped automatically from (a) based on the GPS target
pose. Ground points and outliers are manually removed
from (b) to obtain (c). All black boxes indicate the same
area that contains a single target.

(a) CAD modeling
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Fig. 5. Example of target plane estimation in step by step.
The red and blue points in (b) and (c) indicate the identi-
fied target planes respectively.

cropping process can be achieved by cropping the tar-
get from the full 3D map manually without GPS. Fol-
lowing loose cropping, the ground points of the loosely
cropped pointcloud can be removed manually. This pro-
cess is defined as tight cropping, as the resulting point-
cloud mostly consists of the target itself with only a small
number of outliers. Although the tight cropping proce-
dure is done manually, ground removal from the loosely
cropped pointcloud is much easier than selecting a single
point that can represent the target from the full 3D map.
As a result, the tight cropping result is more consistent
among different users compared to the previous methods.
The cropping process is displayed in Fig. 4.

After extracting the tightly cropped pointcloud from
the 3D pointcloud map, the calculation of its pose is



Table 1. Relative error experiment results. The relative error(Erel) and standard deviation(σrel) of each sequence is
written in bold. t1 & t2 indicates the error in the distance between target 1 and target 2.

Erel (m) σrel (m) t1 & t2 t1 & t3 t1 & t4 t1 & t5 t2 & t3 t2 & t4 t2 & t5 t3 & t4 t3 & t5 t4 & t5

Sequence 1 0.0754 0.0413 0.0197 0.0826 0.0701 0.1271 0.1021 0.0902 0.1470 0.0140 0.0440 0.0569

Sequence 2 0.0647 0.0352 0.0133 0.0697 0.0546 0.1136 0.0836 0.0680 0.1269 0.0141 0.0445 0.0589

Sequence 3 0.0499 0.0315 0.0257 0.0748 0.0903 0.0932 0.0488 0.0650 0.0680 0.0132 0.0167 0.0030

Sequence 4 0.0532 0.0290 0.0056 0.0455 0.0708 0.0912 0.0521 0.0765 0.0971 0.0265 0.0461 0.0206

Sequence 5 0.0633 0.0431 0.0095 0.0796 0.0988 0.0990 0.0900 0.1089 0.1096 0.0187 0.0179 0.0008

Table 2. Absolute error experiment results. The abso-
lute error(Eabs) and standard deviation(σabs) of each se-
quence is written in bold.

Eabs(m) σabs (m) target1 target2 target3 target4 target5

Sequence 1 0.0513 0.0204 0.0523 0.0720 0.0337 0.0236 0.0752

Sequence 2 0.0420 0.0211 0.0450 0.0584 0.0282 0.0099 0.0688

Sequence 3 0.0398 0.0098 0.0589 0.0316 0.0361 0.0336 0.0385

Sequence 4 0.0370 0.0130 0.0403 0.0467 0.0140 0.0327 0.0511

Sequence 5 0.0516 0.0110 0.0571 0.0643 0.0313 0.0513 0.0538

achieved through the following three steps. First, K-
means clustering with K = 2 is applied to the tightly
cropped pointcloud, dividing it into two groups of points,
P1, P2. Each cluster represents one plate of the target.
Next, RANSAC is applied to the pointcloud of each
plate, P1, P2, in order to remove the outliers. The fit-
ting function of RANSAC is a plane function based on
random 3 points, and the inlier threshold is 0.03m. Af-
ter RANSAC, inlier pointclouds that represent each plate,
PR
1 , PR

2 remain. Finally, SVD is applied to each inlier
pointcloud, PR

1 , PR
2 , calculating the optimal plane func-

tion, P op
1 , P op

2 . An example of data processing at each
step is displayed in Fig. 5.

Based on the strategy, P op
1 , P op

2 should be perpendicu-
lar while each plane itself is perpendicular to the ground.
Only plane functions that satisfy the perpendicular con-
ditions within a threshold of 1◦ proceed to the target pose
calculation, while those that do not meet the threshold are
redirected back to the K-means clustering process.

From the functions of P op
1 , P op

2 , the intersection line
l is calculated as a cross of the normal vectors of P op

1

and P op
2 . If the target is perpendicular to the ground, the

estimated target pose is ideally defined by the intersec-
tion point between l and the ground plane. However, in-
evitable errors exist in the angle between intersection line
l and the ground plane. Furthermore, the target is not ex-
actly located at z = 0; the target has its own height along
the z axis. Therefore, the point on l corresponding to
the the average height of P op

1 and P op
2 is utilized as the

estimated target pose. To enhance the robustness of our
algorithm, we calculated 100 sample poses for each tar-
get, averaging these to obtain the final estimated target
pose.

Fig. 6. Satellite view example of the experimental envi-
ronment and target positions.

3. RELATIVE AND ABSOLUTE ERROR
METRIC

Based on the estimated target pose and GPS-based
ground truth pose, we propose two different error metrics
that represent the accuracy of a 3D pointcloud map in var-
ious aspects. Before calculating the accuracy of the map,
the estimated target pose and ground truth pose has to be
aligned since the frame of the acquired 3D map may not
match the frame of the ground truth pose. We exploited a
2D image registration method based on the argmin func-
tion to minimize the sum of distances between the corre-
sponding estimated target pose and GPS target pose. This
is achieved by translating and rotating the map frame op-
timally. The 2D transformation matrix R and 2D transla-
tion vector t is obtained by the following Eq. (1):

argmin
R,t

N∑
i=1

∥(Rxi + t)− x̂i∥2 (1)

where N is the number of targets, x and x̂ denote the es-
timated target pose and GPS target pose respectively.

After registering the estimated target pose to GPS tar-
get pose, map accuracy is calculated based on two differ-



ent metrics: Relative error and Absolute error.
Relative error is calculated by averaging the difference

of distance between the estimated target positions with
the GPS-based distance between the same combination
of targets. For the relative error calculation of n targets,
distance error is calculated for all

(
n
2

)
= n(n−1)

2 combi-
nations of targets and the average is defined as the relative
error. In this study, 5 targets were exploited and the rela-
tive error was calculated by averaging 10 different com-
binations. Since relative error is calculated based on the
distance error between the targets, it focuses on evaluat-
ing the general accuracy of the map.

Absolute error is the average of the distances between
the estimated target position and its corresponding GPS-
based target position. As absolute error is calculated
based on the target position error itself, the absolute er-
ror metric focuses more on the map accuracy of the local
area where the targets are positioned. Furthermore, high
standard deviation of the absolute errors indicate that the
accuracy of the 3D map varies across different locations
of the map.

4. EXPERIMENTS AND RESULTS

We tested the proposed algorithm based on a real-
world dataset acquired from a highway construction site.
The 3D pointcloud map was generated by the LiDAR
SLAM algorithm LIO-SAM[1], while Velodyne VLP-
32C LiDAR, MicroStrain 3DM-GX5-25 9 DoF IMU, and
NovAtel CPT7 GPS were exploited as the hardware. The
experiment environment and hardware position are dis-
played in Fig. 6.

With consistent target and environment settings, we
acquired 5 sequences and calculated the relative and ab-
solute errors for each sequence. The experiment results
are displayed in Table. 1 and Table. 2.

The experiment results show that relative error and
absolute error have similar tendencies following the se-
quences. Sequences with smaller relative error show
small absolute error, and vice versa. This indicates that
the general map error of the 3D map is highly related to
the local map error, suggesting that one error metric in-
cludes information of the other error metric indirectly.

Furthermore, as presented in Table. 1, there is a ten-
dency for the relative error to increase as the distance be-
tween targets increases. Due to this effect, relative error
may show higher values for larger maps. On the other
hand, absolute error compares the position of a single tar-
get based on GPS target pose and estimated target pose,
providing map-size-independent accuracy information.

For absolute error, the results displayed in Table. 2 in-
dicate that the error from targets 2, 3, and 4 tends to be
lower than those from targets 1 and 5. This is due to the
robot’s trajectory which makes an ellipsoid around the
targets, visiting targets 1 and 5 only once while other tar-
gets are visited twice.

It is challenging to keep the factors such as the distance
from the robot to each target and the number of visits

per target constant across different sequences. In order to
remove these effects and measure the accuracy of the 3D
pointcloud map robustly, the relative error metric may be
exploited.

5. CONCLUSION

In this work, we propose hardware and a software al-
gorithm that can be exploited to measure the accuracy of
a 3D pointcloud map while maintaining the robustness
in outdoor environments and LiDAR sparsity. Further-
more, we introduce two different error metrics, Relative
error and Absolute error, that represent general map accu-
racy and local map accuracy. Through the real-world ex-
periment, we demonstrated the relationship between two
error metrics and the robustness of our hardware and al-
gorithm. This approach offers insights into the local and
global quality of the 3D pointcloud map, enhancing eval-
uation standards for LiDAR(-Inertial) SLAM algorithms.
To overcome the current limitations of this research, we
plan to develop a fully automated software that operates
without any manual intervention.
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