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Fig. 1: The stereo thermal image pairs (left) and the thermal 3D point cloud maps (right) for three different times for our
KAIST sequences are visualized. The 3D point cloud map at the middle is constructed using our SE(3) baseline trajectory.
Our STheReO dataset provides stereo thermal camera images with multiple commonly used sensors such as IMU, RGB
camera, and LiDAR. Using our bundle of sensors and baseline trajectories, we encourage exploring stereo thermal camera-
based SLAM researches that can be used for robotic applications such as thermal-LiDAR mapping as in the right plots
and Fig. 7. From the thermal LiDAR map (right), we can see the 3D temperature variation within a day when a particular
building (red box) in the morning heats up faster than others as it faces the direction of the sunrise. We can also see the
distinct thermal intensity gaps among different times for the same site.

Abstract— This paper introduces a stereo thermal camera
dataset (STheReO) with multiple navigation sensors to encour-
age thermal SLAM researches. A thermal camera measures
infrared rays beyond the visible spectrum therefore it could
provide a simple yet robust solution to visually degraded envi-
ronments where existing visual sensor-based SLAM would fail.
Existing thermal camera datasets mostly focused on monocular
configuration using the thermal camera with RGB cameras
in a visually challenging environment. A few stereo thermal
rig were examined but in computer vision perspective without
supporting sequential images for state estimation algorithms.
To encourage the academia for the evolving stereo thermal
SLAM, we obtain nine sequences in total across three spatial
locations and three different times per location (e.g., morning,
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day, and night) to capture the variety of thermal characteristics.
By using the STheReO dataset, we hope diverse types of
researches will be made, including but not limited to odom-
etry, mapping, and SLAM (e.g., thermal-LiDAR mapping or
long-term thermal localization). Our datasets are available at
https://sites.google.com/view/rpmsthereo/.

I. INTRODUCTION

State estimation of robot poses and the surrounding land-
mark locations (well known as simultaneous localization and
mapping (SLAM) [8]) is an essential task for a mobile
robot to navigate an unknown environment. Particularly,
for some harsh environments where visual information is
easily degraded (e.g., subterranean [5] or nighttime [9]), the
robust perception should be guaranteed for safe navigation.
Recently, thermal-infrared cameras [10, 11, 12] have been
employed to cope with such visually degraded environments
where conventional gray or RGB cameras cannot provide
rich information thus the existing visual SLAM algorithms
[13, 14, 15, 16] may fail.

However, thermal camera-based SLAM algorithms [9, 17]
have been overlooked compared to conventional cameras and
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TABLE I: Comparison with other datasets including thermal camera

Datasets SLAM Research Relevancy Thermal - Stereo Thermal - Monocular LiDAR IMU GPS RGB

PST900 [1] 3 3

ComplexUrban [2] 3 3 3 3 3
KITTI [3] 3 3 3 3 3

ViViD [4] 3 3 3 3 3
SubT [5] 3 3 3 3 3

CATS [6] 3 3 3 3 3 3
KAIST Day/Night [7] 3 3 3 3 3 3

Ours (STheReO) 3 3 3 3 3 3 3

LiDAR-based methods [18, 19, 20]. A few datasets are cur-
rently available that have thermal image streams designed for
SLAM researches (i.e., providing various traversals for mul-
tiple environments with ground-truth trajectories)[7, 4, 5].
Unfortunately, none of them supports stereo thermal camera
rigs for stereo thermal image-based SLAM researches. CATS
[6] provides the stereo configuration but differs from us in
the target domain without providing a sequential data for
SLAM.

A thermal camera inevitably accompanies non-uniformity
correction (NUC) [21] to mitigate sensor noise that internal
heats accumulate. NUC freezes the camera and drops image
frames for a few seconds, which could degrade state esti-
mation algorithm performance (e.g., tracking lost). Potential
alleviation is to force the NUC off during image acquisition
as in [9] which may cause gradual temperature drift. With
the NUC on, perfect synchronization among thermal cameras
is hardly achievable. This asynchronous characteristic of the
data would be the critical challenges [22] for most visual
SLAM that assumes synchronized image stream.

Together with the stereo configuration, a dataset containing
enough NUC events is required to develop a robust SLAM
algorithm. To the best of our knowledge, there is no publicly
released stereo thermal dataset relevant to SLAM. In this
paper, we provide a dataset particularly designed for thermal
camera-based researches in odometry and mapping in real-
world outdoor environments under temporal variations.

• To the best of our knowledge, our dataset (STheReO)
is the first one equipped with stereo thermal cameras
with multiple sensors in SLAM academia, as seen in
Fig. 1.

• We provide a set of multiple sequences that cover three
different spatial sites under various temperature and
illumination conditions (e.g., morning, day, and night),
and the NUC occurrence diversities.

• We provide SE(3) baseline trajectories for all sequences
for the state estimation algorithm evaluation.

By releasing this STheReO dataset, we hope to acceler-
ate Stereo Thermal Researches in not only Odometry and
mapping but also thermal place recognition or long-term
autonomy.

II. RELATED WORKS

A. Thermal Camera for SLAM

Existing thermal camera-based state estimation methods
fused the thermal data with common other sensor suites
such as IMU [17], LiDAR [9], or stereo pair [23]. Mouats
et al. [23] proposed stereo thermal camera-based odometry.
Khattak et al. [17] proposed a direct visual-inertial odometry
method by avoiding the transformation of 14-bit raw thermal
data to an 8-bit image, which caused information loss but
generally required for indirect methods. Shin and Kim [9]
proposed sparse depth-enhanced thermal camera SLAM by
exploiting a 3D LiDAR. Recently, deep learning-based ther-
mal SLAM researches have been proposed [10, 11, 12]. For
thermal camera in/extrinsic calibration, Saponaro et al. [24]
used a chessboard pattern with heterogenous materials (to be
selectively heated) to measure the temperature differences
and capture the corner points in the chessboard. However,
this method is limited in obtaining a sharp image due to heat
transfer. By contrast, [25] used a calibration board containing
a set of square holes to obtain more sharped patterns from the
image. Meanwhile, Borges and Vidas [26] remarked on the
importance of NUC management for the practical infrared
visual odometry.

Despite these existing studies, we believe the scale of
thermal camera-based SLAM researches is still smaller than
those of common visual SLAM. This scale limitation may
be because the aforementioned methods were all evaluated
on their own private datasets, making it difficult to be
quantitatively compare them in equivalent settings.

B. Datasets for Thermal SLAM research

Despite a few datasets including thermal cameras, cur-
rently accessible datasets mostly targeted for the front-end
perception such as pedestrian detection [27] and segmenta-
tion [1], which is less suitable for SLAM research without
providing temporally sequential data stream.

Moreover, publicly available SLAM-relevant datasets
equipped with thermal cameras are less developed [7, 4, 5]
compared to the common (gray or RGB) visual domain
[3, 28, 29, 30, 31, 2, 32] or range sensors [33, 34]. Choi et al.
[7] published a dataset including a monocular thermal cam-
era, stereo RGB, 3D LiDAR, and IMU sensors. They used
a beam splitter to acquire parallax-free pair data between
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TABLE II: The sensor specification of our dataset

Sensor Manufacturer, Model Description Hz

Thermal Camera FLIR, A-65 0.9◦ and 0.06 m resolution, 90◦ Vert.,69◦ horiz. FOV, (640,512) resolution 10
RGB Camera FLIR, Flea-3 Global shutter 3channel camera, (1280,560) resolution 10
3D LiDAR Ouster, OS1-128 128 channel, 360◦ FOV, (1024,128) resolution 10
IMU Xsens, MTi-300 High performing Attitude and Heading Reference System 100
RTK GPS Novatel, CPT-7 Providing accurate pose using GNSS + INS solution 100

RGB and thermal images. However, they designed the dataset
to focus more on perception (e.g., object detection, vision
sensor enhancement, depth estimation, and multi-spectral
colorization) than state estimation. Rogers et al. [5] provided
a monocular thermal camera dataset with multi-sensors in
the subterranean tunnel environment. This dataset does not
provide the thermal camera’s intrinsic and extrinsic param-
eters with respect to other sensors. A monocular thermal
camera and its calibration parameters are available within the
ViViD dataset [4], however, the spatial and temporal scales of
the dataset are restricted compared to ours. A more detailed
comparisons with other datasets are arranged in Table I.

In this paper, we provide the first stereo thermal camera
dataset with multi-sensors and 6D ground-truth trajectories.
Our dataset consists of a stereo thermal camera and naviga-
tion sensors appropriate to SLAM researches. Our sequences
include large-scale spatial coverages for three distinct loca-
tions at three different times (i.e., morning, day, and night).
We also provide thermal cameras’ extrinsic parameters,
which is calculated by ground extraction-based targetless
calibration, to boost developing sensor-fusion SLAM with
our stereo thermal cameras.

III. SYSTEM OVERVIEW

A. Sensor Configuration

Our sensors and the hardware system are visualized in
Fig. 2. The sensor-rig is placed on top of a car platform. We
have multiple sensors commonly used for SLAM such as
RGB cameras, LiDAR, IMU, and RTK-GPS as well as the
stereo thermal cameras. Table II represents the sensor’s spec-
ifications. The baselines of the stereo thermal cameras and
the stereo RGB cameras are 0.62 m and 0.50 m, respectively.
We note the stereo thermal cameras are located outer than
the RGB cameras to maximize their baseline. Each sensor’s
coordinates are drawn as colored arrows. Please refer to the
details of the parameters from Fig. 2 and our dataset site1.

B. Thermal Camera Intrinsic Calibration

Unlike RGB cameras that measure visible light, a thermal
camera measures infrared rays related to the object’s surface
temperature. Therefore, blurs in thermal image are inevitable
due to heat transfer. To mitigate this issue, existing thermal
camera intrinsic calibration methods [24] use the calibration
board made of different materials to obtain heat differences.
However, even in this method, heat transfer occurs and blurry
images cannot be avoided. Thus, by following the work of

1https://sites.google.com/view/rpmsthereo/
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Fig. 2: The STheReO dataset’s sensor configuration. The
upper left picture shows the sensor system’s front view, and
both the cameras and LiDAR are mounted to face the front
of the vehicle. The sensors’ x, y, and z coordinates are
represented as red, blue, and green arrows, respectively. The
lower left figure shows the sensors’ height, and the right
figure shows the top view of the sensor system.

[25], we successfully found the exact corner points in thermal
images and conduct the intrinsic parameter calibration using
a pattern board with square-shaped holes. A computer moni-
tor was placed behind the board to be used as the background
heat source.

C. Thermal Camera and LiDAR Extrinsic Calibration

For the extrinsic calibration between the thermal cameras
and the LiDAR, a target-based method may be limited
because of the blurs in the thermal images. Instead, we
performed a targetless extrinsic calibration.

For the extrinsic calibration between thermal cameras and
LiDAR, we defined three costs and combined them with
weights for the final optimization. For the first cost, we used
a mutual information (MI) between a thermal image and a
synthetic LiDAR intensity image as in [35].

fMI =
∑
Y

∑
X

P (X,Y ) log
P (X,Y )

P (X)P (Y )
(1)

, where X and Y represent images from heterogenous
domains (e.g., thermal image and LiDAR intensity image).

For the MI cost minimization, we found directly using
the raw thermal images would empirically be intractable.
The LiDAR and thermal image modality differ, yielding
a lower correlation in the histogram distributions of the
heterogeneous sensors. Instead, we propose using ground-
based MI cost minimization for the thermal-LiDAR extrinsic
calibration. In an urban environment, the grounds heats up
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Fig. 3: (a) The top rows are the original and a synthetic thermal images, which has pixel values from the intensities of
the projected corresponding LiDAR point cloud of a single scan. The second rows are an automatically ground-segmented
thermal image from the original one and the projected LiDAR intensity image from a plane-extracted point cloud. On the
bottom, the LiDAR points are well overlaid on the thermal image (the yellow region is the segmented ground). (b) The first
three columns in the graph represent the cost by applying rotation perturbation according to roll, pitch, and yaw direction
from -5 degrees to 5 degrees. The next three columns are cost graphs representing perturbation for translation from -0.25m
to 0.25m along the x, y, and z axes. The rows from top to bottom represent ground MI, edge, motion, and final costs,
respectively. The MI cost was effective at constraining pitch, yaw, and y-direction (lateral). The MI cost is relatively weak
constrained, while the motion cost successfully constrained all directions except for the x-direction (scene depth). This weak
x-directional translation is finally confined by the edge cost. By summing up, the final cost used for optimization shows an
optimal graph at 0.

faster than the other objects on a sunny day. Consequently,
the ground pixels tend to have uniform and more significant
values. By segmenting the ground pixels from the thermal
images and extracting a plane from LiDAR, we defined a
summed MI cost utilizing a set of multiple pairs from the
thermal cameras and the LiDAR sensor. In Fig. 3(a), sample
images from each step are visualized.

The second cost aligns the edge of thermal image and
LiDAR’s pointcloud. Leveraging Gaussian-based edge detec-
tion for the thermal image, we apply distance transform to the
edge of the thermal image. Similarly, LiDAR’s discretized
points using depth and intensity value are projected on a
thermal image and undergo distanced transformation. Lastly,
we apply pixel-wise multiplication between two images.

fedge = C −
∑
u,v

EC(u, v)EL(u, v) (2)

, where EC and EL represent the distance transformed
thermal and LiDAR’s edge images respectively.

The third cost, the motion cost, exploits the relative motion
estimation from the LiDAR pair and the thermal camera pair.
If the extrinsic calibration is correct, the visual odometry will
be aligned to LiDAR odometry. Our approach is to convert

the extrinsic calibration to the visual odometry problem by
using the extrinsic parameter as a variable. Accordingly, We
employed the relative pose between the previous frame and
the current frame of LiDAR through Iterated Closest Point
(ICP). After obtaining a relative pose based on the LiDAR, a
3D point is simultaneously projected onto the image plane of
t−1 and t frame of the thermal camera. For these projected
points, we measure radiometric error around 3 by 3 patches.
The cost is determined by summing these radiometric errors
for all projected points between sequential frames of the
thermal image and normalized using the number of points,
N .

fmotion =

∑
It−1(ut−1, vt−1)− It(ut, vt))

2

N
(3)

, where It−1 and It represent the t-1 and t-th camera frames.

IV. STEREO THERMAL CAMERA DATASET

A. Sequence Summary

The thermal camera measures infrared light, which is
related to the temperature of object surfaces. Therefore, we
produced multiple sequences from various times and places
to gain a diverse dataset. Table IV represents each sequence’s
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Fig. 4: GT trajectory overlapped with the aerial map. The
right image’s color represents the temperature. The closer the
blue is to yellow, the higher the temperature. The colormap
in each trajectory is independently normalized for clearly
visualizing of the temperature differences within a single
sequence. We can see more distinct temperature differences
in a single trajectory, as observed in the SNU and Valley
sequences because these sites are surrounded by a mountain
or the waterside. Also, the start and end point of the loop
closure is marked with a black circle, and the loop closure
is connected with a red line.

specifications. In our dataset, three different locations are
available, and three sequences per location at different times
are acquired. The sites’ trajectories and aerial views are
visualized in Fig. 4.

1) KAIST: KAIST is a campus environment with few
dynamic objects. These sequences share the same regions
of our other dataset, MulRan [33].

2) SNU: SNU is also a campus surrounded by a mountain.
Interestingly, the trajectories of SNU sequences’ trajectories
have a large altitude difference along the mountain between
places in them (i.e., maximum 149 m) compared to other
sequences of KAIST and Valley.

3) Valley: The Valley sequences are located along a
waterside. People and moving cars frequently appreared in
the Valley’s day sequence, compared to the other two sites.
Also, the Valley sequences are designed to have many
loops to support loop detection researches as well as short-
term odometry and mapping. The temperature (i.e., thermal
intensity) differences are clearly seen in among the first,
second, and the third rows in Fig. 6.

Also in Fig. 6, a set of example frames of our dataset
is organized. We can see the robustness of thermal images
compared to the conventional visual images under illumina-
tion changes. We placed a big artificial target (e.g., ArUco
marker [36], 1000 mm×1000 mm was used) at each site,
as can be seen at the beginning and end of a sequence, to
support the elaborate evaluations of odometry algorithms.

Fig. 5: The directory structure of our dataset.

B. Sensors and Data Format

We provide the individual sensor data as files to effectively
manage the whole dataset’s size and to support easy access
to each frame. We also provide Robot Operating System
(ROS)-based player, which reads the files and publishes them
into ROS topics, to make the real-time SLAM algorithm
development easy. Our dataset’s file structure is described
in Fig. 5. The details of each sensor data are as follows.

1) Stereo Thermal Camera Data: We stored the left and
right data of the thermal camera in the form of <time
stamp.png> in the image/stereo thermal 14 left and im-
age/stereo thermal 14 right paths, respectively. The thermal
image shape is 640× 512 resolution of 10 Hz. We provide
14-bit raw thermal images for various applications rather
than 8-bit normalized images, which are susceptible to the
normalization range and a scene’s particular temperature.
Due to NUC, two thermal cameras run asynchronously. The
occurrence of the NUC event is more frequent during the
day than night.

2) Stereo RGB Camera Data: The RGB camera data
are provided in image/stereo left and image/stereo right
directories, and are named as <time stamp.png>. RGB
images are synced in 10 Hz using an external trigger. The
RGB image shape is 1280× 560. The night (i.e., low light
environment) data were acquired by adjusting the gain and
exposure time to maintain the image quality as well as the
10 Hz data stream.

3) 3D LiDAR Data: A set of 3D LiDAR data is saved
as a binary file per scan and named as <time stamp.bin>
in sensor data/ouster file. Each binary file contains x, y and
z, and intensity information of 1024 width and 128 rays
(heights) of a single LiDAR scan.

4) GPS, INS Data: The directory sensor data/gps.csv
stores the GPS data of Novatel CPT7 INS sensor. The .csv
file contains the time stamp, latitude, longitude, altitude,
and position covariance. The directory sensor data/inspva.csv
provides not only GPS information but also information on
rotation through correction made via GPS and INS. The
member in the file are in the following order: time stamp,
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TABLE III: Sequence description of our Dataset

Sequence Name Location Time Description Path length Duration

KAIST01 Yuseong, Daejeon Morning (2021-08-28-08-27-15) Flat campus
Many loops

7.55 km 1084s
KAIST02 Yuseong, Daejeon Day (2021-08-28-15-28-46) 7.55 km 1351s
KAIST03 Yuseong, Daejeon Night (2021-08-28-00-51-08) 7.55 km 1130s
SNU01 GwanAk, Seoul Morning (2021-09-11-08-36-30) High altitude variance campus

High quality of GPS signal

8.75 km 1138s
SNU02 GwanAk, Seoul Day (2021-09-04-14-18-33) 8.75 km 1246s
SNU03 GwanAk, Seoul Night (2021-09-01-22-10-45) 8.75 km 1525s
Valley01 Yuseong, Daejeon Morning (2021-08-28-10-53-37) Waterfront environment 2.08 km 418s
Valley02 Yuseong, Daejeon Day (2021-08-28-17-58-38) Shortest sequence 2.08 km 372s
Valley03 Yuseong, Daejeon Night (2021-08-27-23-13-46) A lot of dynamic objects 2.08 km 355s

Fig. 6: Examples of stereo thermal frames and corresponding visual images for the scene. The three groups on each column
represent the KAIST, SNU, and Valley sequences. The first three rows correspond to morning, day, and night. The last
row provides example thermal images’ robustness under heavy lights where the conventional visual images were damaged.
The thermal cameras are robust against illumination variance, as can be seen in the third and forth rows.

3100 3200 3300 3400 3500 3600 3700 3800 3900
Intensity

0

100000

200000

300000

400000

500000

C
ou

nt

 3D point cloud map's thermal intensity distribution (KAIST sequences)

KAIST01 (morning) 
KAIST02 (afternoon) 
KAIST03 (midnight)

(a) Thermal intensity distributions of 3D maps (b) 3D point cloud maps colored by corresponding thermal intensity of each point.

Fig. 7: Our potential application (i.e., thermal-LiDAR mapping). (a) The thermal intensity distribution in histogram. This
histogram shows the temperature distribution that changes with respect to the data acquisition time. The temperature in the
afternoon reveals a higher average temperature than others. (b) 3D point cloud maps for the same site (i.e., KAIST) with
respect to different timestamps (i.e., morning, day, and night). The intensity value used for the map colors is the 14 bit value
from raw thermal measurements.

latitude, longitude, height, north velocity, east velocity,
up velocity, roll, pitch, azimuth, and data status.

5) IMU Data: The sensor data/imu.csv file, logged
in 100 Hz, contains the following information in order:
time stamp, quaternion x, quaternion y, quaternion z, quater-
nion w, eular x, eular y, eular z, gyro x, gyro y gyro z,
acceleration x, acceleration y, acceleration z, magnetic-field
x, magnetic-field y, and magnetic-field z data.

C. Ground Truth Trajectory

We provide baseline SE(3) trajectories expected as a
robot’s ground truth poses in UTM global coordinates. The
LiDAR is the body frame of our dataset and the baselines are
generated via LiO-SAM [37] with RTK-GPS. Because RTK-
GPS may be sporadically unavailable within a sequence, we
excluded uncertain RTK-GPS values when constructing the
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TABLE IV: Trajectory estimation using ORB-SLAM2 and DSO over day (Valley01) and night (Valley03) sequences.
Mono and stereo images of thermal and RGB cameras were tested. In the table, ‘M’ and ‘S’ represent mono and stereo
camera. Translation and rotation were evaluated through RE and ATE. RE translation and rotation represent interval error
rate and degree per 10m. ATE means RMSE for the entire path. If tracking loss occurred during the evaluation process, it
was marked with ‘—’.

ORB DSOSequence Name Sensor type trans (%) (RE) rot (RE) [ ◦/10m] trans (AE[m]) rot (AE[ ◦]) trans (%) (RE) rot (RE)[ ◦/10m] trans (AE[m]) rot (AE[ ◦])

Thermal (M) 1.97 0.08 34.11 17.37 11.66 0.26 132.03 15.38
RGB (M) 0.71 0.02 9.82 2.41 10.43 0.12 55.45 7.7
Thermal (S) 1.31 0.13 15.02 12.03 11.1 1.01 127.52 76.71Valley01

RGB (S) 0.37 0.04 6.51 3.91 8.88 0.21 57.38 28.31
Thermal (M) 7.82 0.1 87.66 30.43 12.31 0.12 115.65 20.32
RGB (M) - - - - - - - -
Thermal (S) 5.86 0.38 47.44 23.95 - - - -Valley03

RGB (S) - - - - - - - -

baseline trajectory by using covariance of the measurement.
Each pose is calculated using LIDAR and IMU factors in the
pose-graph model, and correction is performed using RTK-
GPS. After that, it is converted into UTM global coordinate
using GPS information. All of the pose using this method
are stored in sensor data/pose.csv .

D. SLAM evaluation on stereo thermal dataset

Utilizing the baseline trajectory of our dataset, the two
most usual methods of visual SLAM were evaluated. For
this evaluation, the representative method of feature-based
approach (ORB-SLAM2 [14]) and the direct-based approach
(DSO [38]) were used. The estimation accuracy was eval-
uated for the thermal cameras (Mono/Stereo) and RGB
cameras (Mono/Stereo). Since ORB-SLAM and DSO use
8-bit images, the evaluation was performed by normalizing
the 14-bit thermal image to an 8-bit image through constant
min and max values. For evaluation metric, RPG trajectory
evaluator [39] was utilized by using baseline trajectory
produced via LiDAR SLAM and RTK-GPS.

As listed in Table IV, both RE and ATE were reported for
two sample sequence from morning and night. In the morn-
ing with sufficient illumination (Valley01), the odome-
try from the RGB cameras substantially outperformed the
thermal cameras. However, at night when visual degradation
occurred (Valley03), the odometry using the RGB camera
encountered severe tracking loss, whereas using a thermal
camera yielded robust results regardless of the illumination
variance.

Notably, large errors for monocular and tracking loss
for stereo images were reported for DSO especially when
a large rotation motion occurred. The low contrast of the
thermal image at night severely deteriorates the estimation
performance. In the Valley03 sequence, there is an interval
where the mountain occupies most of the image under large
rotational motion. Accordingly, the residual pixel difference
in the image was not significant, yielding the direct method
failure. On the contrary, the features were still available for
this texture-less case, enabling ORB-SLAM to outperform
DSO. During the evaluation, the 14-bit thermal image was
converted to 8-bit by applying the min and max value to
minimize data loss using the histogram in Fig. 7(a). During

the conversion, there was a difference in the performance of
odometry depending on the value of clipping. We believe
the future implementation of 14-bit direct methods could
alleviate this conversion issue.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented the stereo thermal dataset
for SLAM researches. We acquired stereo thermal camera
sequences as well as multiple navigation sensors such as
LiDAR or IMU in environments with various temperatures.
The sequences were designed to have enough path length and
multiple revisits(e.g., loop-closures) to promote long-term
and large-scale SLAM researches across multiple environ-
ments. We also provide baseline trajectories for all sequences
to make quantitative evaluations possible for odometry and
mapping algorithms. We hope that our dataset will boost ther-
mal camera-based SLAM researches for various mobile robot
navigation missions, such as odometry, mapping, thermal
sensor fusion, and long-term localization. In doing so, we
would like to encourage research topics utilizing multiple and
potentially asynchronous thermal cameras to complement
each other for robust thermal SLAM.
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